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additional restrictions such as unconfoundedness or the availability of instruments, we take

a set identification approach. We treat the identified bounds as model restrictions and

test if these restrictions are compatible with stochastic dominance between counterfactual
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are also considered. By applying the proposed methods we investigate distributional effects

of smoking during pregnancy on infant’s birthweight.
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1. Introduction

We propose testing procedure for stochastic dominance between potential outcomes in the

panel treatment setup. Unobserved heterogeneity in the model need not be time–invariant

and is allowed to be arbitrarily correlated with a treatment variable. Instead of imposing

additional restrictions such as unconfoundedness or the availability of instruments, we take

a set identification approach. We treat the identified bounds as model restrictions and

test if these restrictions are compatible with stochastic dominance between counterfactual

outcomes. Extensions to higher order dominance and heterogeneous effects given covariates

are also considered. By applying the proposed methods we investigate distributional effects

of smoking during pregnancy on infant’s birthweight.

Evaluating policy or treatment effects has been an important question in economics and

other fields of the social sciences. Unlike the natural sciences, it is a common concern

in the social sciencses that a treatment variable may be endogenous due to uncontrolled

heterogeneity and/or self-selection.1 As well summarized by Imbens and Wooldridge (2009)

and Heckman and Vytlacil (2007a,b), various econometric methods have been developed

to address this issue, and a myriad of empirical studies were conducted based on them.

They can be categorized broadly into three groups: methods based on the assumption

of unconfoundedness and matching (e.g., Dehejia and Wahba (2002)), methods based on

instrumental variables (e.g., Angrist, Imbens, and Rubin (1996)), and methods based on

panel data using the idea of difference-in-differences (DID; e.g., Ashenfelter and Card (1985)).

However, each approach still faces some potential problems in certain situations. Unobserved

heterogeneity may not be well-described by the observed characteristics; good instrumental

variables may be hard to find; and the additive separability of unobserved heterogeneity

required by the DID approach can be restrictive.

In addition, many of the existing methods focus on average treatment effects while

there is accumulating evidence that heterogeneity in treatment effects matters and possibly

misleads the researcher who just focuses on the average effect. For instance, Heckman and

Smith (1997) considered program evaluation, and they provided empirical evidence that

heterogeneity in program responses is indeed important. Also, Djebbari and Smith (2008)

provided extra evidence for impact heterogeneity using quasi-experimental data from Mexico.

Some recent research have investigated distributional treatment effects under various

assumptions. Firpo (2007) used the unconfoundedness assumption to identify quantile

treatment effects. Lee (2009) proposed nonparametric tests for the lack of distributional

effects, where he followed the two-sample setup of the Mann–Whitney test. Crump, Hotz,

1Some empirical studies are based on quasi-experiments, where randomization is imposed by design. This is
not the situation we consider. We focus on the case where data are observational.
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Imbens, and Mitnik (2008) and Lee and Whang (2009) proposed testing methods for hetero-

geneous treatment effects under the unconfoundedness assumption. Abadie (2002) proposed

bootstrap tests for stochastic dominance between potential outcomes given instrumental

variables. Rothe (2010) discussed treatment effects when the counterfactual experiment

is to change the distribution of a treatment variable. We note that all these approaches

depend on the conventional assumptions—either unconfoundedness or the availability of

instruments—that may not hold in some situations as illustrated below.

All these points above necessitate studying distributional treatment effects with a minimal

set of assumptions. The first question we cast in this paper is how much we can learn about

distributional treatment effects without making conventional assumptions. Specifically, we

consider a model where unobserved heterogeneity is arbitrarily correlated with a treatment

variable but panel data are available.

This question is further motivated by the fact that there are many examples where the

endogeneity issue is quite severe but good panel data sets are available. We mention three

examples here. The first one is the study on the wage premium of the union membership.

The union membership status is usually believed to be correlated with unobserved ability.

This subject has been investigated by many labor economists using various panel data

sets: the National Longitudinal Survey (NLS), the Current Population Survey (CPS), the

Canadian Labor Market Activity Survey (LMAS), and the German Socio-economic Panel

(see, e.g., Jones (1982), Blakemore, Hunt, and Kiker (1986), Robinson (1989), Lemieux

(1998), Budd and Na (2000), and Beck and Fitzenberger (2004)).

The second example of repeated treatments can be found in Health Maintenance Or-

ganization (HMO) markets. For instance, Jung (2010) examined the effect of voluntary

information disclosure of HMO plans on service quality using panel data. Information

released to the public may help consumers recognize quality differences among different

providers, in which case it becomes a policy-relevant question how much public information

disclosure will improve service quality of each plan.

Finally, in the health economics literature, we can find many studies that measure the

effect of smoking during pregnancy on birth outcomes (such as birghweight). In the panel

setup, the (potential) outcome variable is the weight of the tth baby delivered by mother i,

and the treatment variable is the smoking status of the mother during the pregnancy of each

baby. The usual concern is that the smoking behavior is correlated with other health-related

factors such as nutrition status or drug addiction that are rarely observed. To deal with

such an endogeneity issue, Abrevaya (2006) carefully constructed a pseudo-panel data set

based on the U.S. federal natality data, and used a fixed-effect estimator.

It should be noted that all the empirical studies listed above use a linear panel model,

which is a natural starting point. The fixed-effect estimator, in fact, can handle unobserved
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heterogeneity effectively when heterogeneity is time-invariant and additively separable.

However, if either one of these assumptions is violated, then the results will be questionable.

For example, a woman having stopped smoking at her second pregnancy may also have

changed some health-related (unobserved) factors. In this case the assumption of time-

invariant heterogeneity is questionable. In the union premium example, workers with low

ability may have different treatment effects from those with high ability, in which case additive

separability of unobserved ability may be unrealistic. One way of relaxing these restrictions

is to introduce correlated random coefficients while the basic linear structure is maintained

(see, e.g., Wooldridge (2005), Graham and Powell (2008), and references therein). Another

approach is to remove the linearity assumption and to work with a nonparametric structural

function including a nonseparable unobserved heterogeneity term (e.g., Chernozhukov,

Fernandez-Val, and Newey (2009)). Depending on the level of nonparametric restrictions,

we can think of various nonseparable models as listed in Matzkin (2007). In this paper we

follow the latter approach but incorporate time-varying unobserved heterogeneity to capture

distributional treatment effects with minimal assumptions.

The second question is about practical inference methods based on set identification.

As a result of flexible model restrictions, the distribution functions of potential outcomes,

the objects of interest in our setup, are only partially identified. Inference under partial

identification has been actively studied during the last decade, and there are many methods

available: e.g., Chernozhukov, Hong, and Tamer (2007), Beresteanu and Molinari (2008),

Rosen (2008), Romano and Shaikh (2010), Andrews and Soares (2010), just to name a few.

Although many papers, once partial identification is obtained, refer to these studies for

possible inference, there is only a little empirical work that actually conducts set inferences

with real data. We think of two reasons for the gap between the theoretical development and

its empirical impact. The first reason is the cost of flexibility: The size of a confidence region

is often too large to draw any general conclusion from data. Second, asymptotic theory

in this area is quite complicated, which reduces the accessibility of empirical researchers.

We emphasize here that there are potentially many policy-relevant questions that can be

empirically answered without conducting a complicated set inference. In particular, by

focusing on a particular question of interest, we can often find much simpler econometric

procedures with more accessible distribution theory. The recent idea proposed by Hahn

and Ridder (2009) highlights the point. They focused on an inference on one particular

parameter of interest while the identified set (of the entire parameters) is treated as a model

restriction that should be maintained both under the null and under the alternative. Using

a similar idea, we show that stochastic dominance of the distributions of potential outcomes

can be tested without conducting a complicated set inference. Furthermore, we apply our
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method to real data; we analyze the panel data on infant’s birthweight used by Abrevaya

(2006).

Contributions of this paper can be summarized as follows. First, we propose a method

for testing distributional treatment effects in a flexible setup. Specifically, we use panel

data without imposing the standard assumptions such as unconfoundedness, time-invariance

and/or additive separability of unobserved heterogeneity, and the availability instruments.

Second, we bridge the gap between the theoretical development in the set inference literature

and its application to empirical studies in the treatment effect context. Finally, empirical

findings about the causal effects of smoking on birth outcomes add more rigorous scientific

evidence to the literature.

The remainder of the paper is organized as follows. In Section 2 we introduce the basic

framework and discuss hypotheses of interest based on the partial identification results. In

Section 3 we propose test statistics and establish their asymptotic properties. In Section 4

two extensions of the approach are discussed. Section 5 presents an empirical study that

investigates the effect of smoking on birthweight. Section 6 concludes with some remarks.

2. The Framework

In this section we discuss the basic framework and partial identification. We then show

how to formulate the hypotheses of stochastic dominance by using the partial identification

result.

2.1. The Parameters and Their Bounds. We consider the panel data {(Yit, Dit) : i =

1, 2, · · · , n, t = 1, 2, · · · , T}, where Dit is a binary treatment variable and Yit is an outcome

variable of interest. We assume a short panel, where n is large but T is small and fixed.

This also corresponds to the examples discussed in the introduction. The observed outcome

Yit depends on the treatment Dit in the following way:

Yit = DitY
1
it + (1−Dit)Y

0
it ,

where Y 1
it and Y 0

it are potential outcomes when Dit = 1 and 0, respectively. We observe only

one of these potential outcomes depending on the treatment status Dit.

The counterfactual setup like this is now standard, at least in the cross-section context,

where the common objective is to compare (some features of) the distributions of two

potential outcomes; e.g., Rosenbaum and Rubin (1983), Hahn (1998), Hirano, Imbens,

and Ridder (2003), and Firpo (2007). This objective is usually achieved by assuming

randomized treatment conditional on observed heterogeneity. However, as we emphasized in

the introduction, it is one of our main goals to avoid this standard assumption to allow for
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potential endogeneity. Data on repeated treatment turn out to be useful for this purpose, as

we discuss below.

We first introduce some notation. Let Ait represent a vector of heterogeneity, some

components of which are not observed, and let Ai = (A′i1, · · · , A′iT )′ be the history of the

heterogeneity of person i. For the sake of presentational clarity, we will not explicitly use

observed covariates for now, but we will discuss such extension in Section 4.2. Note that each

component of the unobserved heterogeneity Ai may vary over time. Let µAi(·) and µAi|Bi
(·|b)

be the marginal and conditional distribution functions of Ai given a generic random variable

Bi = b. Further, letting F jt (·) be the distribution function of Y j
it for j = 0, 1, we can write

F jt (y) =

∫
P
[
Y j
it ≤ y

∣∣Ai = a
]
dµAi(a). (1)

We now make two assumptions on the underlying model.

Assumption 1 (Selection on Unobservables). The treatment history Di = (Di1, · · · , DiT )′

is independent of the current potential outcomes (Y 0
it , Y

1
it) conditional on the history of all

heterogeneity Ai.

Assumption 2 (Time Homogeneity). For all t 6= s and j = 0, 1, the conditional distribution

of Y j
it is the same as that of Y j

is given the history of all heterogeneity Ai.

Assumption 1 is more flexible than the standard unconfoundedness assumption since the

heterogeneity, Ait, which can be arbitrarily correlated with the treatment, does not need to

be observed. One practical restriction imposed by Assumption 1 is that there is no feedback

from Yit−1 to Dit once Ai is controlled for. This requirement can be viewed as the strong

exogeneity assumption given Ai. We can relax it to the assumption with predetermined

treatments: (Y 0
it , Y

1
it) is independent of (Di1, · · · , Dit)

′ given Ai but can be correlated with

Dis for s > t. However, we do not discuss this extension in this paper, because it does not

change the essence of the analysis but makes presentation complicated.

Assumption 2 means that the distributions of potential outcomes given the history of

heterogeneity are stationary. Note that Y j
it and Y j

is, however, can be still correlated with

each other. This assumption implies that F jt (·) in (1) does not depend on t anymore, and we

will simply denote it by F j(·) throughout the paper. A similar assumption is also adopted

by Chernozhukov, Fernandez-Val, Hahn, and Newey (2009) and Khan, Ponomareva, and

Tamer (2011) in the context of a nonseparable panel regression model and a censored panel

regression model, respectively.

We now discuss the identification of F j(y), focusing on j = 1. Note first that

F 1(y) = P [Dit = 0]

∫
P
[
Y 1
it ≤ y

∣∣Ai = a
]
dµAi|Dit

(a|0) + P [Yit ≤ y, Dit = 1] , (2)
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because the second term on the right-hand side is equal to

P [Dit = 1]

∫
P
[
Y 1
it ≤ y

∣∣Ai = a
]
dµAi|Dit

(a|1)

from Assumption 1. The first term in (2) is not identified because Y 1
it is not observed when

Dit = 0. However, it is trivially bounded between 0 and P[Dit = 0], which results in the

interval identification of F 1(y). Lemma 1 below shows that this interval can be further

improved by using the observations of multiple periods.

To this end, we need some additional notation. Let (t1, t2, · · · , tT ) be a permutation of

(1, 2, · · · , T ). For j ∈ {0, 1}, let pj1(y) = P[Yit1 ≤ y,Dit1 = j] and pjk(y) = P[Yitk ≤ y,Dit1 =

1− j, · · · , Ditk−1
= 1− j,Ditk = j] for k ≥ 2. Then, define

Lj(y) =

T∑
k=1

pjk(y),

U j(y) = Lj(y) + P[Dit1 = 1− j,Dit2 = 1− j, · · · , DitT = 1− j].

The bounds of the distributions F j(·) are provided in the following lemma.

Lemma 1. Suppose that Assumptions 1 and 2 are satisfied. For each j ∈ {0, 1} , we have

0 ≤ Lj(y) ≤ F j(y) ≤ U j(y) ≤ 1

for all y ∈ R.

Similar calculation to Lemma 1 can be found in Manski (1990) and Chernozhukov,

Fernandez-Val, and Newey (2009). Note that the dependence of each bound on a particular

permutation is implicit in Lemma 1. In fact, the bounds in Lemma 1 should be the same in

any permutation of (1, 2, · · · , T ) because of the time homogeneity assumption.

2.2. The Hypotheses. The testing problem considered is the stochastic dominance of

Y 0 to Y 1, where the distributions of Y 0 and Y 1 are partially identified. Recall that Y 0

stochastically dominates Y 1 in the first order if and only if

F 0(y) ≤ F 1(y) for all y ∈ R. (3)

If the null hypothesis is given as the condition in (3), it means that the treatment D = 1

has a distributional treatment effect to the negative direction. For example, one might test

whether the birthweight decreases over all quantiles when a mother smokes.2 Note also that

2This interpretation requires a rather strong assumption such that each individual maintain his/her rank in
both treated and untreated distributions. Because of this restriction, Heckman and Smith (1997) claimed
that the quantile treatment effect be based on the joint distribution, not the difference of two marginals. See
Firpo (2007) and Imbens and Wooldridge (2009) for more discussions.
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this hypothesis is stronger than comparing the average treatment effects, i.e., E[Y 0
it ] ≥ E[Y 1

it ]

is implied by (3).

Since F 1(·) − F 0(·) is not point-identified, it is infeasible to test (3) directly. We may

think of three different approaches to this problem. First, one may construct a set confidence

region for F 1(·)− F 0(·) directly. The identification result in Lemma 1 implies that for all

y ∈ R
L1(y)− U0(y) ≤ F 1(y)− F 0(y) ≤ U1(y)− L0(y).

Constructing a confidence region based on these bounds and checking if the region lies above

zero would be one testing procedure. However, this method is unnecessarily conservative.

Second, the method of testing for moment inequalities can be considered. Letting

γ(y) = F 1(y) − F 0(y), we can reparameterize (F 1(y), F 0(y)) as (F 1(y), γ(y)). A simple

algebra shows that

 L0(y) ≤ F 1(y)− γ(y) ≤ U0(y)

L1(y) ≤ F 1(y) ≤ U1(y)

γ(y) ≥ 0

⇐⇒

−1 1

1 −1

−1 0

1 0

0 1


(
F 1(y)

γ(y)

)
≤


−L0(y)

U0(y)

−L1(y)

U1(y)

0

 .

Now for each y ∈ R the utmost right-hand side term is a vector of expectations, and one

can view (F 1(y), γ(y)) as a parameter satisfying a set of moment inequalities. Therefore, we

can use any of the existing inference procedures for moment inequality models (e.g., Rosen

(2008), and Andrews and Soares (2010)), and conduct joint inferences on (F 1(y), γ(y)).

Projecting it on the space of γ(y) and checking if the (projected) region lies above zero will

establish a testing procedure for stochastic dominance.

This method would improve the power compared to the first approach, but there are

still some loss of power due to the inference involving F 1(y). Furthermore, note that the

parameter in our testing problem is an infinite-dimensional object. Although we express

both procedures as a finite number of inequalities, there are in fact infinite number of them

indexed by y. Constructing confidence regions in the infinite-dimensional space is not so

obvious.

The third approach, which we have adopted in this paper, is to treat the identified bounds

in Lemma 1 as given restrictions and to test whether stochastic dominance is compatible

with the restrictions. Therefore, our approach stands in the same line as those of Imbens

and Manski (2004) and Hahn and Ridder (2009) in the sense that we test the existence of

the true parameter satisfying the null hypothesis of dominance as well as the restrictions

given by the identified bounds. This approach is less conservative than the aforementioned

ones, and the asymptotic theory involved turns out to be simple and standard, which was
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highlighted by Hahn and Ridder (2009) in the context of moment inequality models. Now,

we formally state the null and alternative hypotheses we consider as follows.

Test of Stochastic Dominance
H∗0 : There exist F 1 and F 0 that satisfy the inequalities in Lemma 1 and

such that F 0(y) ≤ F 1(y) for all y ∈ R,

H∗1 : All F 1 and F 0 that satisfy the inequalities in Lemma 1 are such that

F 0(y) > F 1(y) for some y ∈ R.

When the null hypothesis H∗0 is rejected, there exist no distributions of the potential

outcomes that satisfy both the model restrictions given in Lemma 1 and the stochastic

dominance simultaneously. One problem is that these hypotheses cannot be tested directly

since they are expressed in terms of F j(y), which are not estimable. However, they have dual

representations in terms of the well-identified bounds, Lj(y) and U j(y). The next lemma

summarizes the dual representation result, where ∆(y) = L0(y)− U1(y).

Lemma 2. The hypotheses H∗0 and H∗1 are equivalent toH0 : ∆(y) ≤ 0 for all y ∈ R,

H1 : ∆(y) > 0 for some y ∈ R.

We have some remarks here. First, the testing problem now becomes a simple one-sided

test with the object ∆(y) that can be easily estimated by a sample analog. Since the

hypotheses are regarding the nonparametric object ∆(·), one can apply the idea of the

Kolmogorov–Smirnov test or the Cramér–von Mises test. This reasoning leads to the test

statistics based on the following objects:

sup
y∈R

∆(y) or

∫
R

max{∆(y), 0}w(y)dy, (4)

where w is an integrable (nonnegative) weight function on R. Both expressions in (4) are

nonpositive under the null and are strictly positive under the alternative. Second, ∆(y)

becomes nonpositive as y → ±∞ so that the data contain no information for extreme values

of y. Therefore, the uniformity over R (or the integration over R) can be relaxed to a

sufficiently large subset of R. Also, depending on the context, one might be more interested

in a specific range of y-values rather than the entire real line (e.g., income distributions

below the poverty line). In such cases, one can just take supremum or integral over the

restricted range of y-values of interest.
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3. The Test Statistics and Asymptotic Theory

The test statistics we consider use the nonparametric sample analog of ∆(·). Let
∑

(t1,··· ,tT )

be the summation over all the T ! permutations (t1, · · · , tT ) of (1, 2, · · · , T ). Using the binary

indicator 1{·}, further let

1iT {y; j} =
1

T !

∑
(t1,··· ,tT )

T∑
k=1

1i{y; j, k} and

1iT {j} =
1

T !

∑
(t1,··· ,tT )

1{Dit1 = 1− j, · · · , DitT = 1− j},

where

1i{y; j, k} =

1{Yit1 ≤ y,Dit1 = j} for k = 1,

1{Yitk ≤ y,Dit1 = 1− j, · · · , Ditk−1
= 1− j,Ditk = j} for k ≥ 2.

Then, the sample analogues of Lj(y) and U j(y) are given by

L̂j(y) =
1

n

n∑
i=1

1iT {y; j} and Û j(y) =
1

n

n∑
i=1

(
1iT {y; j}+ 1iT {j}

)
.

We define ∆̂(y) = L̂0(y)− Û0(y), and our statistics are given by

TKS = sup
y∈R

√
n∆̂(y),

TCV =

∫
R

max{
√
n∆̂(y), 0}w(y)dy,

where w is an integrable (nonnegative) weight function defined on R. For more discussions

on computation, see Appendix C.

To discuss the distributional properties of the test statistics above, we assume that the

sample is independent and identically distributed (i.i.d.) over individuals.

Assumption 3. The sample {(Yit, Dit) : i = 1, 2, · · · , n, t = 1, 2, · · · , T} is such that

{(Y ′i , D′i) : i = 1, · · · , n} is i.i.d., where Yi = (Yi1, Yi2, · · · , YiT )′ and Di = (Di1, Di2, · · · , DiT )′.

Let H(y1, y2) = Cov
(
1iT {y1; 0}− 1iT {y1; 1}− 1iT {1}, 1iT {y2; 0}− 1iT {y2; 1}− 1iT {1}

)
, and

let G be a Gaussian process in `∞(R) with the covariance kernel H(·, ·).3

3For any Y ⊂ R, `∞(Y) is the collection of all bounded functions from Y to R, and every sample path of
G(·) is an element of `∞(R).
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Theorem 1 (The Null Distributions). Suppose that Assumptions 1, 2, and 3 hold. Under

H0, there exist sequences of random variables {ZKSn } and {ZCVn } such that

TKS ≤ ZKSn
d→ sup
y∈R

G(y),

TCV ≤ ZCVn
d→
∫
R

max{G(y), 0}w(y)dy

as n→∞, where the inequalities hold with probability one and they hold as equalities when

∆(y) = 0 for all y ∈ R.

The results in Theorem 1 do not require any regularity conditions other than the i.i.d.

assumption and those for the identification result in Lemma 1. Since our test is a one-sided

test, the inequalities in Theorem 1 are natural. Specifically, the equalities hold under the

least favorable null of ∆(y) = 0 for all y ∈ R. Our test is not pivotal but critical values can

be obtained by either simulations or the bootstrap.4 In particular, simulating p-values can

be done by adopting the p-value transformation method of Hansen (1996). The key idea is

that the Gaussian process G can be simulated by Ĝs defined in (5) below, where Ĝs weakly

converges in probability to G in `∞(R) in the sense of Giné and Zinn (1990), for example.

We illustrate the simulation procedure in more detail as follows.

Let s ∈ {1, 2, · · · , S} denote each simulation, where S is the number of replications we

consider. For each s, let {usi : i = 1, 2, · · · , n} be i.i.d. draws from the standard normal

distribution that is independent of the data. For y ∈ R, we define

Ĝs(y) =
1√
n

n∑
i=1

(1iT {y; 0} − 1iT {y; 1} − 1iT {1})usi. (5)

Further, we define

ZKS
s = sup

y∈R
Ĝs(y) and ZCV

s =

∫
R

max{Ĝs(y), 0}w(y)dy.

Then, the simulated p-values are given by

p̂KS =
1

S

S∑
i=1

1
{
ZKS
s ≥ TKS

}
and p̂CV =

1

S

S∑
i=1

1
{
ZCV
s ≥ TCV

}
.

We now discuss the power properties of the tests. Basically all standard properties of the

Kolmogorov–Smirnov test and the Cramér–von Mises test apply in our context.

4When w is a probability density, the integral can be computed by a Monte Carlo method, because the
integral can be approximated by discretizing the support of w due to the stochastic equicontinuity of G.
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Theorem 2 (Power). Suppose that Assumptions 1, 2, and 3 hold. Let C be any constant.

Then, under H1,

P[TKS > C]→ 1 and P[TCV > C]→ 1

as n→∞, provided that supy∈R ∆(y) > 0 and
∫
R max{∆(y), 0}w(y)dy > 0, respectively.

Theorem 2 shows that our tests are consistent against any fixed alternatives. The

consistency of the tests do not require any statistical regularity conditions either. Our tests

also have non-trivial local power against
√
n–local alternatives. For this discussion, we

consider local deviations from the least favorable null:

H1,n : ∆(y) = δ(y)/
√
n

for some nonnegative function δ(y). The theorem below shows the local power properties of

our tests.

Theorem 3 (Local Power). Suppose that Assumptions 1, 2, and 3 hold. Let cKS(β) and

cCV (β) be critical values for size β based on the null distributions given in Theorem 1. Under

H1,n,

lim
n→∞

P
[
TKS > cKS(β)

]
≥ β and lim

n→∞
P
[
TCV > cCV (β)

]
≥ β,

where the inequalities are strict if supy∈R δ(y) > 0 and
∫
R max{δ(y), 0}w(y)dy > 0, respec-

tively.

4. Extensions

In this section we extend the proposed testing procedure in two different directions. First,

we consider testing the second order stochastic dominance that gives a natural guidance for

higher order cases. Second, we allow some components of Ait to be observed and consider

the case where conditional treatment effects given observed heterogeneity can vary across

different subpopulations. The null hypothesis will be the existence of a subpopulation for

which the treatment has a stochastic dominance effect.

4.1. Tests for the Second Order Stochastic Dominance. The proposed method can

be naturally extended to higher orders. To highlight the idea, we focus on the second order

case in this subsection. Tests for higher orders can be dealt with similarly.

We first need the exact expressions of the hypotheses in our setup and the dual repre-

sentation. Recall that F j (y) is the cdf of Y j for j = 0 and 1. The standard definition says

that Y 0 stochastically dominates Y 1 in the second order if and only if∫ y

−∞
F 0(t)dt ≤

∫ y

−∞
F 1(t)dt for all y ∈ R. (6)
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Note that this hypothesis is more difficult to reject than the first order case since the former

can allow for F 0 (y) > F 1 (y) for some y and is implied by the latter. We want to test the

hypothesis in (6) while incorporating the partial identification given in Lemma 1. The same

reasoning in the first order case leads us into the following hypotheses representation.

Test of Second Order Stochastic Dominance
H∗0S : There exist F 1(·) and F 0(·) that satisfy the inequalities in Lemma 1 and

such that
∫ y
−∞ F

0(t)dt ≤
∫ y
−∞ F

1(t)dt for all y ∈ R,

H∗1S : All F 1(·) and F 0(·) that satisfy the inequalities in Lemma 1 are such that∫ y
−∞ F

0(t)dt >
∫ y
−∞ F

1(t)dt for some y ∈ R.

To introduce the dual representation, we first assume that Y 0
it and Y 1

it have compact

support, of which the union will be denoted by Y ⊂ R. We do this because ∆(y) could

become a strictly negative constant as y → ±∞ so that integrating ∆(·) from −∞ is not

generally well-defined. However, this assumption is not a serious limitation, because F 0(y)

and F 1(y) are trivially point–identified as 0 or 1 whenever y → ±∞. A similar assumption

can be also found in Barrett and Donald (2003).

Assumption 4. Y 0
it and Y 1

it have compact support so that their union, denoted by Y ⊂ R,

is also compact.

Under assumption 4, the proposed hypotheses can be represented byH0S :
∫ y
ymin

∆(t)dt ≤ 0 for all y ∈ Y,

H1S :
∫ y
ymin

∆(t)dt > 0 for some y ∈ Y,

where ymin = inf Y . The duality between H∗0S , H
∗
1S and H0S , H1S follows similarly to Lemma

2 since integration is a monotone operator. Now we can define the test statistics similarly as

the first order case:

TKS
S = sup

y∈Y

∫ y

ymin

√
n∆̂(t)dt, TCV

S =

∫
R

max{
∫ y

ymin

√
n∆̂(t)dt, 0}w(y)dy,

where w is an integrable (nonnegative) weight function on Y ⊂ R. We summarize its null

distribution in the next theorem.
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Theorem 4. Suppose that Assumptions 1, 2, and 3 hold. Under H0S, there exist sequences

of random variables {ZKSS,n } and {ZCVS,n } such that

TKS
S ≤ ZKSS,n

d→ sup
y∈Y

∫ y

ymin

G(t)dt,

TCV
S ≤ ZCVS,n

d→
∫
Y

max{
∫ y

ymin

G(t)dt, 0}w(y)dy

as n→∞, where the inequalities hold with probability one and they hold as equalities when

∆(y) = 0 for all y ∈ Y.

For the power and local power properties, Theorems 2 and 3 can be similarly extended.

4.2. Observed Heterogeneity. Suppose now that the heterogeneity Ait, which was needed

to be controlled for to achieve randomization, consists of two parts: a vector of observable

covariates Xit and a vector of unobserved components αit. Treatment effects could be

heterogeneous over different subgroups characterized by Xit. For example, some workers

may have positive wage premium of the union membership while the others have negative

premium. If the absolute magnitude of these two effects are similar, a simple test may

mislead a researcher to conclude that there is no treatment effect even though there exist

substantial conditional treatment effects.

Crump, Hotz, Imbens, and Mitnik (2008) and Lee and Whang (2009) proposed testing

procedures for these heterogeneous (or conditional) treatment effects under the standard

unconfoundedness assumption (or selection on observables). Since we do not make the

unconfoundedness assumption, their approaches are not directly applicable. However, our

specification testing approach based on a set identification can be modified to fit their

framework. We pay special attention to Lee and Whang (2009) in this subsection, because

the limit distribution of the test statistic with an extra integration over Xit turns out to be

a normal distribution.

Below we focus on the first order dominance case and we show how to formulate the

problem without discussing too much technicality.5 Before proceeding, we modify Assumption

3 to include the observed covariates Xit.

Assumption 5. The sample {(Yit, Dit, X
′
it)
′ : i = 1, 2, · · · , n, t = 1, 2, · · · , T} is such

that {(Y ′i , D′i, X ′i)′} is i.i.d., where Yi = (Yi1, Yi2, · · · , YiT )′, Di = (Di1, Di2, · · · , DiT )′, and

Xi = (X ′i1, X
′
i2, · · · , X ′iT )′. We assume that Xi is continuous and has a probability density

function f .

5A formal result is stated below, but technical assumptions similar to Lee and Whang (2009) are given in
Appendix B.7.
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Let Ait = (X ′it, α
′
it)
′ and αi = (α′i1, · · · , α′iT )′, where Xit and αit are defined as above. We

consider the conditional distributions of the potential outcomes as before:

F j(y|x) =

∫
P
[
Y j
it ≤ y

∣∣Xi = x, αi = a
]
dµαi|Xi

(a|x) for j = 0, 1, (7)

where x ∈ X with X being the support of Xi.

We now ask if there is any evidence that shows that the treatment is effective at least for

some subpopulation Xs in X . The lack of point-identification of F j(y|x) makes this problem

nonstandard and different from Lee and Whang (2009). However, the conditional version

of Lemma 1 is available under Assumptions 1 and 2, from which we take the specification

testing approach as in Sections 2 and 3.

Let pjk(y|x) be defined as pjk(y) but with conditioning on Xi = x, and let

Lj(y|x) =
T∑
k=1

pjk(y|x),

U j(y|x) = Lj(y|x) + P[Dit1 = 1− j,Dit2 = 1− j, · · · , DitT = 1− j|Xi = x].

The same calculation of Lemma 1 with conditioning on Xi = x gives that for j = 0 and 1,

Lj(y|x) ≤ F j(y|x) ≤ U j(y|x) for all (y, x) ∈ Y × Xs, (8)

where Y is the support of y and Xs ⊂ X . The proof for these bounds is omitted since it

is identical to that of Lemma 1. As in the previous sections, we treat the inequalities in

(8) as model restrictions that should hold always. We then test whether the existence of

subpopulation, for which the first order stochastic dominance holds, is compatible with the

model restrictions. More precisely, we consider the following hypotheses of the conditional

treatment effect:
H∗0C : There exist F 1(·|·) and F 0(·|·) that satisfy inequalities in (8) and

such that F 0(y|x) ≤ F 1(y|x) for all y ∈ Y and all x ∈ Xs,

H∗1C : All F 1(·|·) and F 0(·|·) that satisfy the inequalities in (8) are such that

F 0(y|x) > F 1(y|x) for some y ∈ Y and all x ∈ Xs,

which are equivalent toH0C : ∆(y, x) ≤ 0 for all (y, x) ∈ Y × Xs,

H1C : ∆(y, x) > 0 for some (y, x) ∈ Y × Xs,
(9)

where ∆(y, x) = L0(y|x)− U1(y|x).

The (dual) hypotheses in (9) are the conditional versions of those in Lemma 2. When the

null hypothesis is not rejected, it is interpreted as there is no evidence against the first order
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stochastic dominance for any subpopulation Xs in X . Note that the hypotheses in (9) are

now comparable with the ones analyzed in Lee and Whang (2009).

We now define our test statistic. In principle, one can think of both sup-type and

integration-type tests, but we only focus on the integration approach here.6 Additional

notation is required. Let K (·) be a kernel function with compact support, and let Kh(s) =

K(s/hn)/hdTn , where dT =
∑T

t=1 dim(Xit) and hn is a bandwidth choice. Let

L̂j(y|x) =
1

f̂(x)

1

n

n∑
i=1

1iT {y; j}Kh(x−Xi),

Û j(y|x) =
1

f̂(x)

1

n

n∑
i=1

(1iT {y; j}+ 1iT {j})Kh(x−Xi),

where f̂(x) = n−1
∑n

i=1Kh(x − Xi). Further let ∆̂(y, x) = L̂0(y|x) − Û1(y|x). Then, we

define the statistic TC for the conditional treatment effect by

TC =

∫ ∫
max{

√
n∆̂(y, x), 0}w̃(y, x)dydx,

where w̃ is a weight function whose support is a compact set Y × Xs. The statistic TC is

similar to TCV except that we have an extra integral over Xi. In fact, this extra integral

is what makes the null distribution of TC completely different from that of TCV . The

Poissonization technique shows that it is a normal distribution.

To characterize the asymptotic properties of TC , we need the following functions:

qi(y) = 1iT {y; 0} − 1iT {y; 1} − 1iT {1}

F (ρ) = Cov
(

max{
√

1− ρZ1 + ρZ2, max{Z2, 0}
)
,

ρv(y, x) =
Var (qi(y)|Xi = x)

f(x)
,

ρ(y, ỹ, x, t) =
K∗(t)

K∗(0)

Cov(qi(y), qi(ỹ)|Xi = x)

f(x)
√
ρv(y, x)ρv(ỹ, x)

,

where Z1 and Z2 are independent standard normal random variables, andK∗(t) =
∫
K(u)K(u+

t)du. Theorem 5 summarizes the properties of TC under the null, alternative, and local

alternatives, which directly follow from Lee and Whang (2009).

6To the best of our knowledge, the asymptotic distribution of the sup–based test for (9) is an open question.
See also Lee and Whang (2009).
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Theorem 5. Suppose that Assumptions 1, 2, 5, and 6 hold.7 Under the least favorable case

of H0C , i.e., ∆(y|x) = 0 for all (y, x) ∈ Y × Xs,

T̂
C
− ηn
σ0

d→ N (0, 1)

as n→∞, where

ηn = h−dT /2
∫
RdT

∫
R

√
ρv (y, x)w̃ (y, x) dydx · E [max {Z1, 0}] ,

σ20 =

∫
{‖t‖≤1}

∫
RdT

∫
R

∫
R
F [ρ(y, ỹ, x, t)]

√
ρv (y, x) ρv (ỹ, x)w̃(y, x)w̃(ỹ, x)dydỹdxdt.

To show the consistency, let C be any constant. Then, under the alternative hypothesis H1C ,

P

(
T̂
C
− ηn
σ0

> C

)
→ 1

as n→∞. Finally, let δ (·, ·) be a real non-negative function, and define local alternatives

by H1C,n : ∆(y, x) = n−1/2δ(y, x). Then, under the local alternatives H1C,n,

T̂
C
− ηn
σ0

d→ N (0, 1) + c

as n→∞ for a positive constant c.

Theorem 5 does not deal with the fact that the bias and standard error should be estimated

in practice. Since this issue is discussed in detail in Lee and Whang (2009), we do not repeat

it here.

5. Empirical Illustration: The Effect of Smoking on Birth Outcomes

In this section, we study the causal effect of smoking during pregnancy on infant’s

birthweight. This question has been investigated in health economics (and in econometrics),

and many studies provide evidence that smoking indeed decreases infant’s birthweight; e.g.,

Permutt and Hebel (1989), Evans and Ringel (1999), Abrevaya (2006), Abrevaya and Dahl

(2008), and Hoderlein and Sasaki (2011). However, there are still remaining concerns such

as the presence of unobserved heterogeneity and the validity of instrumental variables.

Mother’s smoking behavior is correlated with other life-style factors, which accounts for

the importance of unobserved heterogeneity. To resolve this endogeneity problem, most

studies in the existing literature including those cited above use either an instrumental

variable (IV) estimator or a fixed-effect estimator. For the IV approach, however, it is

7Assumption 6 is a technical one that follows Lee and Whang (2009). The assumption and comments on it
are provided in Appendix B.7.
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not always obvious to obtain good instrumental variables; large confidence region of the

IV estimator makes it difficult to statistically distinguish the result from that of the OLS

estimator. Alternatively, when panel data are available, fixed-effect estimation might be a

natural approach. However, when a mother quits smoking, her (unobserved) health-related

habits might also change together. Thus, the time-invariance of fixed-effects seems to be a

strong assumption in this context.

We relax such restrictions in our empirical study by using the method developed in the

previous sections. Specifically, in a panel data setup, we allow for time-varying unobserved

heterogeneity that can be nonseparable to the other variables. With this flexible model,

we test the presence of first-order stochastic dominance relationship between potential

birthweight outcomes.

Our analysis is based on the data set constructed by Abrevaya (2006) from the U.S.

federal natality data in 1990–1998. Since the original data do not provide unique identifiers,

he applied several matching algorithms to find out each pair of a mother and children. We

select the “matched panel #3” as it is constructed in the most conservative way. The same

data set is also used by Arellano and Bonhomme (2010) in the random coefficients panel

model.

For notation, Yit is the birthweight of the tth baby of mother i; Dit = 1 if the mother

smoked during the pregnancy and 0, otherwise; Y 1
it and Y 0

it are potential birthweights

depending on the mother’s smoking status.

Table 1 summarizes the proportion of smoking behavior during pregnancy when each

mother has two or three children, respectively. In either case, more than 82% of mothers

had never smoked. We focus on the subpopulation of those who had ever smoked during

pregnancy for the following reasons. First, the sample size of those who had never smoked

is too large to obtain any meaningful bounds. Second, those who ever smoked make a

more relevant population under the presumption that smokers may quit in the future but

non-smokers are unlikely to start smoking during pregnancy. As a result, the distribution

function F 1(·) is point-identified while the other distribution F 0(·) is only partially identified.

Figures 1–3 report the estimated distributions of F 0(·) and F 1(·) in Ever-Smoker sample

of three births and in the various subsamples. In each graph, the solid line stands for the

estimates of F 1(·), and the shaded area for F 0(·). Looking at the upper panel of Figure 1,

which is from 3-Birth, we can find that F̂ 1(·) is located above the lower bound of F̂ 0(·) over

all birthweights. This implies that there might exist F 0 stochastically dominating F 1 in the

first order. However, F̂ 1(·) clearly crosses the upper bound of F̂ 0(·) around the birthweight

of 4, 000 grams, which implies that we might not find F 0(·) stochastically dominated by

F 1(·) in the identified region.
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Table 1. Proportions of Smoking Behavior

Two Births (T = 2)

Full sample (n = 141, 929) Ever smoker (n = 25, 390)

Never smoker Switcher Always smoker Switcher Always smoker

82.1% 9.8% 8.1% 54.5% 45.5%

Three Births (T = 3)

Full sample (n = 12, 360) Ever smoker (n = 2, 137)

Never smoker Switcher Always smoker Switcher Always smoker

82.7% 5.6% 11.7% 67.6% 32.4%

This graphical intuition is formally confirmed by the statistical test results in Table 2.

We first test the null hypothesis that the distribution of birthweight from a nonsmoking

mother first-order stochastically dominates that from a smoking mother (F 0 FSD F 1). We

next test the null of the other direction (F 1 FSD F 0). At the row of 3-Birth, both the

Kolmogorov–Smirnov (TKS) test and the Cramér–von Mises (TCV ) test cannot reject the

first null but strongly reject the flipped one. We also report the test results with the sample

of two births at the row of 2-Birth in the same table. Only the TCV test yields similar

results to those of 3-Birth, and the TKS test cannot reject the flipped null. This shows that

an additional time period helps the test perform better by improving identification power.

We next turn our attention to low and high quantiles of the distributions. Specifically,

we consider the cases where the minimum birthweight among three children from the same

mother is below 2, 500 grams (BWmin < 2, 500g) or the maximum is above 4, 080 grams

(BWmax > 4, 080). The weights of 2, 500 grams and 4, 080 grams correspond to the 10th

and 90th percentiles of the birthweight distribution in the U.S., which are usually used to

define ‘underweighted’ and ‘overweighted’ infants. The middle and lower panels in Figure 1

show that the estimated distributions have the same patterns as above, and the statistical

tests in Table 2 again confirm it. Thus, we may conclude that the same relationship (F 0

FSD F 1) holds conditional on low and high quantiles of the birthweight distributions.

We also consider various subpopulations. Based on mother’s characteristics in the data,

we select the following subgroups: No Marriage, No High School, No Alcohol, All Girls, and

All Boys, where all group names are self-explanatory. (Detailed definitions are given under

Table 2.) Figures 2–3 and Table 2 summarize the results for these subpopulations. Overall,

the results are consistent with those of the ever-smoker population except All Boys. In the
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subpopulations of No Marriage and No High School, the estimated distributions F̂ 1(·) are

located slightly above the upper bounds of F̂ 0(·) over short intervals, which yield relatively

high p-values in the TCV test (10.4% and 13.4%, respectively). In the subpopulation of All

Boys, the estimate F̂ 1(·) crosses both with the lower bound (around 1, 500 grams) and with

the upper bound (around 4, 000 grams) of F̂ 0(·). The tests in Table 2 also reject the null

hypotheses in both directions, and do not confirm any conclusive stochastic relationship.

Finally, we repeat all statistical tests listed above with the mean-adjusted samples. There

is a tendency that, among siblings, infants born in the later order are heavier than those

born earlier, which suggests that the time homogeneity assumption may be too strong. In

fact, the second and third infants in the sample are heavier by about 74 and 80 grams,

respectively, on average than the first one. Table 3 summarizes the test results with the

mean-adjusted sample by these mean shifts. Overall, the results are similar to those from

the original sample. In the subpopulations of No Marriage and No High School, it turns out

that the p-values of the TCV test even decreases.

To sum up, this empirical study provides more rigorous scientific evidence that smoking

during pregnancy negatively affects birthweights. Allowing for nonseparable and time-varying

unobserved heterogeneity, it confirms that the distribution of the birthweight from a smoking

mother might be stochastically dominated by that from a nonsmoking mother.

6. Conclusions

In this paper we proposed testing methods for stochastic dominance between the distribu-

tions of potential outcomes. Not relying on the unconfoundedness assumption, we allowed for

the presence of unobserved heterogeneity. We considered the availability of panel data, but,

unlike the standard panel literature, we do not assume the time-invariance of unobserved

heterogeneity. Despite this level of generality nontrivial bounds of the distributions of

potential outcomes are still available, and we showed how to use them to test stochastic

dominance among the potential outcome distributions. Using the proposed methods, we

investigated the causal effects of smoking during pregnancy on infant’s birthweight, and

reinforced the empirical evidence showing that smoking negatively affects birth outcomes.

We conclude this paper by suggesting areas of future research. First, the proposed methods

can be immediately applied to many empirical studies on treatment effects with a lot of

flexibility. Second, an idea similar to our partial identification approach can be applied to

other contexts such as testing for monotonicity or structural changes when the model is

partially identified. Finally it is also worth deriving an asymptotically admissible test within

the set identification setup.
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Appendix A. Tables and Figures

Table 2. p-values and Sample Sizes of the Original Sample

(Null Hypothesis) F 0 FSD F 1 F 1 FSD F 0 no. obs.

TKS TCV TKS TCV Switcher
Always
Smoker

2-Birth 1.000 0.521 0.320 0.046 13,846 11,544
3-Birth 1.000 0.538 0.000 0.000 1,445 692

Subpopulations of 3-Birth

BWmin < 2 , 500g 1.000 0.519 0.000 0.000 251 167
BWmax > 4 , 080g 1.000 0.486 0.000 0.000 294 65

No Marriage 0.802 0.486 0.000 0.103 512 296
No High School 1.000 0.520 0.000 0.134 694 399

No Alcohol 1.000 0.499 0.000 0.000 1,265 570

All Girls 1.000 0.505 0.000 0.000 173 109
All Boys 0.000 0.111 0.000 0.000 218 92

Note: FSD stands for ‘First-order Stochastically Dominates.’ TKS is the Kolmogorov-Smirnov type test

and TCV is the Cramér-von Mises type test. 2-Birth and 3-Birth stand for 2-births and 3-births in

Ever-Smoker sample, respectively. The remaining subpopulations are from 3-Birth. BWmin stands for the

minimum birthweight among the three children from the same mother, and BWmax is defined similarly. The

definitions of each subpopulation are as follows. No Marriage: mothers who never get married; No High

School : mothers who do not graduate high schools; No Alcohol : mothers who never drink during three

pregnancies; All Girls: mothers whose three children are all female; All Boys: mothers whose three children

are all male.
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Table 3. p-values and Sample Sizes of the Mean-adjusted Sample

(Null Hypothesis) F 0 FSD F 1 F 1 FSD F 0 no. obs.

TKS TCV TKS TCV Switcher
Always
Smoker

2-Birth 1.000 0.516 0.336 0.055 13,846 11,544
3-Birth 0.976 0.538 0.000 0.000 1,445 692

Subpopulations of 3-Birth

BWmin < 2 , 500g 1.000 0.520 0.000 0.000 251 167
BWmax > 4 , 080g 1.000 0.493 0.000 0.000 294 65

No Marriage 0.805 0.486 0.000 0.066 512 296
No High School 1.000 0.521 0.000 0.118 694 399

No Alcohol 0.916 0.499 0.000 0.000 1,265 570

All Girls 1.000 0.510 0.000 0.000 173 109
All Boys 0.000 0.071 0.000 0.000 218 92

Note: The original sample is mean-adjusted by the amounts of mean shifts in T = 2 and 3. See the note

below Table 2 for other notation.



22

Figure 1. Distributions of Birthweight
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Note: The solid lines stand for the estimates of F 1(·), and the shaded areas for F 0(·). BWmin is the

minimum birthweight among three children from the same mother, and BWmax is defined similarly.
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Figure 2. Distributions of Birthweight in Subpopulations
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Note: The solid lines stand for the estimates of F 1(·), and the shaded areas for F 0(·).
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Figure 3. Distributions of Birthweight in Subpopulations
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Note: The solid lines stand for the estimates of F 1(·), and the shaded areas for F 0(·).
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Appendix B. Proofs

Throughout the appendix we use the abbreviations RHS and LHS for right–hand side

and left–hand side, respectively. Further, RHS1 means the first term on the right–hand, and

similarly for RHS2, RHS3, etc..

B.1. Proof of Lemma 1. We will focus on j = 1 since the other case is symmetric. Fix a

particular permutation (t1, t2, · · · , tT ). Recall from (2) that

F 1(y) = P [Dit1 = 0]

∫
P
[
Y 1
it1 ≤ y

∣∣Ai = a
]
dµAi|Dit1

(a|0) + P [Yit1 ≤ y, Dit1 = 1] , (10)

where the RHS2 is p11(y). The RHS1 of (10) is equal to the sum of the two terms:

P [Dit1 = 0, Dit2 = 0]

∫
P
[
Y 1
it1 ≤ y

∣∣Ai = a
]
dµAi|Dit1

,Dit2
(a|0, 0), (11)

P [Dit1 = 0, Dit2 = 1]

∫
P
[
Y 1
it1 ≤ y

∣∣Ai = a
]
dµAi|Dit1

,Dit2
(a|0, 1) , (12)

where term (12) is equal to p12(y) by Assumptions 1 and 2.

Therefore, the RHS of (10) is now the sum of (11) and
∑2

k=1 p
1
k(y). Apply the same

calculation to (11) and continue until we reach tT . We then obtain

F 1(y) =

T∑
k=1

p1k(y)

+P [Dit1 = 0, · · · , DitT = 0]

∫
P
[
Y 1
it1 ≤ y

∣∣Ai = a
]
dµAi|Dit1

,··· ,DitT
(a|0, · · · , 0),

from which the statement follows. �

B.2. Proof of Lemma 2. We first need some notation. For each y ∈ R, define the bounds

of the true underlying distributions:

F(y) =
{

(a, b) ∈ R2 : L0(y) ≤ a ≤ U0(y) and L1(y) ≤ b ≤ U1(y)
}
,

which is not empty for any y ∈ R by construction. Also, note that 0 ≤ Lj(y) ≤ U j(y) ≤ 1

for all y ∈ R and j = 0, 1, where U j(y)− Lj(y) = P[Dit1 = 1− j,Dit2 = 1− j, · · · , DitT =

1− j] = Pj . Further let

G =
{

(a, b) ∈ R2 : a ≤ b, 0 ≤ a ≤ 1, 0 ≤ b ≤ 1
}
.

• Equivalence of the Null Hypotheses:

(i) Sufficiency: Let H∗0 be true. Then, there exist distribution functions F 0 and F 1 such

that for any y ∈ R,
(
F 0(y), F 1(y)

)
∈ F(y) ∩ G. Fix such F 0 and F 1 and suppose that H0 is
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not true. Then, there exists ỹ ∈ R such that ∆(ỹ) = L0(ỹ)− U1(ỹ) > 0, which implies that

F 1(ỹ) < F 0(ỹ). This contradicts to
(
F 0(ỹ), F 1(ỹ)

)
∈ G.

(ii) Necessity: Let H0 be true. Then, F(y) ∩ G 6= ∅ for all y ∈ R. We will construct

distribution functions F 0 and F 1 such that
(
F 0(y), F 1(y)

)
∈ F(y) ∩ G for all y ∈ R. Fix

a sufficiently small ε > 0, and we define F 0 and F 1 as follows: (a) 0 ≤ L1(y) < ε, let

F 1(y) = max{L0(y), L1(y)}; (b) 1 − ε < U0(y) ≤ 1, let F 0(y) = min{U0(y), U1(y)}; (c)

otherwise, let F 0(y) = L0(y) and F 1(y) = U1(y). Then,
(
F 0(y), F 1(y)

)
∈ F(y) ∩ G for

all y ∈ R by construction. Since F0, F
1 are CADLAG functions by construction, they are

distribution functions.

• Equivalence of the Alternative hypotheses:

(i) Sufficiency: Let H∗1 be true. Fix M > 0, and choose two distribution functions F 0

and F 1 such that (a) when −M ≤ y < M ,
(
F 0(y), F 1(y)

)
=
(
L0(y), U1(y)

)
; and (b)

otherwise, F 0(y) = F 1(y) → 0 as y → ∞ and F 0(y) = F 1(y) → 1 as y → ∞. We then

have
(
F 0(y), F 1(y)

)
∈ F(y) for all y ∈ R by construction, provided that M is sufficiently

large. Therefore, there must be some ỹ ∈ R such that F 0(ỹ) > F 1(ỹ), which implies that

ỹ ∈ [−M,M ]. So, ỹ satisfies F 0(ỹ) = L0(ỹ) > U1(ỹ) = F 1(ỹ), which implies that ∆(ỹ) > 0.

(ii) Necessity: Let H1 be true. Then, there exists ỹ ∈ R such that F(ỹ) ⊂ Gc, where

Gc = {(a, b) ∈ R2 : a > b, 0 ≤ a ≤ 1, 0 ≤ b ≤ 1}. Consider any distribution functions F 0

and F 1 that satisfy
(
F 0(y), F 1(y)

)
∈ F(y) for all y ∈ R. It then follows that

(
F 0(ỹ), F 1(ỹ)

)
∈

F(ỹ) ⊂ Gc. Therefore, F 0(ỹ) > F 1(ỹ) and H∗1 follows. �

Remark: Figure 4 illustrates the hypotheses in Lemma 2.

B.3. Proof of Theorem 1. Note that under H0, for all y ∈ R,

√
n∆̂(y) ≤

√
n
(

∆̂(y)−∆(y)
)
,

max{
√
n∆̂(y), 0} ≤ max{

√
n
(

∆̂(y)−∆(y)
)
, 0},

where the inequalities become equalities when ∆(y) = 0 for all y ∈ R. Therefore, by the

continuous mapping theorem, it suffices to show that
√
n(∆̂−∆) weakly converges to G

in `∞(R). This weak convergence follows from the fact that the collection of functions

{1iT {y; 0} − 1iT {y; 1} − 1iT {1} : y ∈ R} is a Vapnik–Çervonenkis class. �

B.4. Proof of Theorem 2. Note that

√
n
∣∣ sup
y∈R

∆̂(y)− sup
y∈R

∆(y)
∣∣ ≤ √n sup

y∈R

∣∣∆̂(y)−∆(y)
∣∣ = Op(1).
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L1(ȳ)

1
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Figure 4. Graphical Illustration of the Null and the Alternative

Therefore,

TKS =
√
n

(
sup
y∈R

∆̂(y)− sup
y∈R

∆(y)

)
+
√
n sup
y∈R

∆(y) = Op(1) +
√
n sup
y∈R

∆(y)→∞.

For TCV , similarly∣∣∣ ∫ max{
√
n
(

∆̂(y)−∆(y) + ∆(y)
)
, 0}w(y)dy −

∫
max{

√
n∆(y), 0}w(y)dy

∣∣∣
≤
∣∣∣ ∫ max{

√
n
(

∆̂(y)−∆(y)
)
, 0}w(y)dy

∣∣∣ = Op(1),

where we used the fact that max(a+ b, 0) ≤ max(a, 0) + max(b, 0). Therefore,

TCV =

∫
max{

√
n∆̂(y), 0}w(y)dy −

∫
max{

√
n∆(y), 0}w(y)dy

+

∫
max{

√
n∆(y), 0}w(y)dy = Op(1) +

√
n

∫
max{∆(y), 0}w(y)dy →∞.

�
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B.5. Proof of Theorem 3. Note that the statistics TKS and TCV are equal to

sup
y∈R

{√
n
(

∆̂(y)−∆(y)
)

+ δ(y)
} d→ sup

y∈R

{
G(y) + δ(y)

}
,∫

R
max{

√
n
(

∆̂(y)−∆(y)
)

+ δ(y), 0}w(y)dy
d→
∫
R

max{G(y) + δ(y), 0}w(w)dy,

which are simply right–shifted versions of the null distributions of TKS and TCV , respectively.

As long as δ(y) > 0 for some y ∈ R, the right–shift is strict, which implies that the rejection

probability will be strictly larger than the nominal size. �

B.6. Proof or Theorem 4. Under H0S ,∫ y

ymin

√
n∆̂(t)dt ≤

∫ y

ymin

√
n
(

∆̂(t)−∆(t)
)
dt,

max{
∫ y

ymin

√
n∆̂(t)dt, 0} ≤ max{

∫ y

ymin

√
n
(

∆̂(t)−∆(t)
)
dt, 0}.

Now, the result follows from the continuous mapping theorem and the weak convergence

result of Theorem 1. �

B.7. Proof of Theorem 5. We first state a set of technical assumptions needed for Theorem

5.

Assumption 6. (i) w̃ (·, ·) is a continuous function on a compact support Y × Xs,
where Y is a strict subset of R and Xs is a strict subset of X ;

(ii) ρv is finite and bounded away from zero on Y × Xs;
(iii) ρ̄(y, ỹ, x) = ρ(y, ỹ, x, t)K∗(0)/K∗(t) satisfies ρ̄(y, ỹ, x) = 1−c1(x)|y−ỹ|a+o(|y−ỹ|a)

uniformly in x ∈ Xs as |y − ỹ| → 0 for some positive constants c1(x) and a such

that c1 is bounded away from zero on Xs;
(iv) K is an s–order kernel with support {u ∈ RdT : ‖u‖ ≤ 1/2}, symmetric around

zero, integrates to one, and is s–times continuously differentiable, where s satisfies

s > 3dT /2;

(v) As functions of x, F 0(y|x), F 1(y|x), f(x), and P[Xi = x|Xi = x] are s–times

continuously differentiable for each y and x with uniformly bounded derivatives;

(vi) supx∈Xs
F j(y|x) <∞ for j = 0, 1;

(vii) The bandwidth satisfies nh2sn → 0, nh3dTn → ∞, and nh2dTn /(log n)2 → ∞, where

s > 3dT /2.

Assumption 6 is a modification of Assumption 4.1 of Lee and Whang (2009). For detailed

discussions of each condition, check the remarks therein. Note that Part (ii) includes the

requirement that f is bounded away from zero on Xs and that ρ̄ in Part (iii) is a correlation

coefficient conditional on Xi = x, which is equal to one when y = ỹ.
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(i) Asymptotic Normality: Note first that ∆(y, x) = E[qi(y)|Xi = x]. Let

∆̃(y, x) =
1

f(x)

1

n

n∑
i=1

qi(y)Kh(x−Xi) and Rn(y, x) =
f(x)− f̂(x)

f(x)f̂(x)

1

n

n∑
i=1

qi(y)Kh(x−Xi),

which implies that ∆̂(y, x) = ∆̃(y, x) +Rn(y, x). Let

ζn(y, x) = ∆(y, x)−∆(y, x)
f̂(x)

f(x)
and

∆̂∗(y, x) = ∆̃(y, x) + ζn(y, x).

Then, Lemma A.1 of Lee and Whang (2009) shows that ζn(y, x) approximates Rn(y, x)

uniformly over (y, x) ∈ Y × Xs at a rate faster than n1/2. Therefore,

∆̂∗(y|x) = ∆̂(y|x) + op

(
n−1/2

)
.

Define

Tn
∗ =

∫ ∫ √
nmax

{
∆(y|x) + ∆̂∗(y|x)− E[∆̂∗(y|x)], 0

}
w̃(y, x)dydx. (13)

Then, Lemma A.2 of Lee and Whang (2009) shows that TC = Tn
∗+op(1). Since ∆(y|x) = 0

for all (y, x) ∈ Y × Xs under the least favorable null hypothesis, we plug ∆(y|x) = 0 into

Tn
∗ and define Tn as follows:

Tn =

∫ ∫ √
nmax

{
∆̂∗(y|x)− E

[
∆̂∗(y|x)

]
, 0
}
w̃(y, x)dydx.

Then, it is enough to show that

Tn − ηn
σ0

d→ N (0, 1) ,

which follows from Theorem A.2 in Lee and Whang (2009).

(ii) Consistency: This result comes directly from the proof of Theorem 4.2 of Lee and

Whang (2009) by changing τ0(y, x) and w(y, x) with ∆(y, x) and w̃(y, x).

(iii) Local asymptotic power: We have

T̂C − ηn
σ0

=
T̂C − η̃
σ0

+
η̃ − ηn
σ0

.

where

η̃ =

∫ ∫
Emax

{
δ (y, x) + h−dT /2

√
ρv (y, x)Z1, 0

}
w̃ (y, x) dydx.

From Theorem 4.3 in Lee and Whang (2009), we know that, under the local alternatives

H1C,n,

T̂C − η̃
σ0

d→ N (0, 1) .
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Now, note that

σ0

(
η̃ − ηn
σ0

)
≥∫ ∫

Emax
{
δ (y, x) + h−dT /2

√
ρv (y, x)Z1, 0

}
−max

{
h−dT /2

√
ρv (y, x)Z1, 0

}
w (y, x) dydx

≥ 1

2

∫ ∫
δ (y, x) w̃ (y, x) dydx > 0,

which establishes the nontrivial local power property. �

Appendix C. A Remark on Computation

In Section 3, test statistics are obtained by averaging over the T ! permutations. In

practice, however, we do not need to consider the entire permutations when calculating

1iT {y; j} and 1iT {j}, because (i) most of the indicators are zero and (ii) many nonzero

indicators are the same.

Note that, for each i, the treatment history Di = (Di1, · · · , DiT )′ is given as one of the

2T types of T × 1 indicator vectors. For example, when T = 2, person i could have one of

the following four types of treatment history Di: (0, 0)′, (0, 1)′, (1, 0)′ or (1, 1)′. Therefore,

when j = 1, 1i{y; 1, k} is possibly nonzero only for the following cases:

• When Di = (1, 1)′, 1i{y; 1, k} = 1{Yi1 ≤ y,Di1 = 1, Di2 = 1} for (t1, t2) = (1, 2)

permutation; or 1i{y; 1, k} = 1{Yi2 ≤ y,Di1 = 1, Di2 = 1} for (t1, t2) = (2, 1).

• When Di = (1, 0)′, 1i{y; 1, k} = 1{Yi1 ≤ y,Di1 = 1, Di2 = 0} for either (t1, t2) =

(1, 2) or (2, 1).

• When Di = (0, 1)′, 1i{y; 1, k} = 1{Yi2 ≤ y,Di1 = 0, Di2 = 1} for either (t1, t2) =

(1, 2) or (2, 1).

• When Di = (0, 0)′, there exist no nonzero cases.

Over the permutations, using the same argument, we can conclude that 1i{y; j, k} = 1

only when 1{Yit ≤ y,Dit = j} = 1 for t = 1, 2, · · · , T (i.e., when the time index of Yit

corresponds to that of Dit). It implies that 1iT {y; j} can be simply obtained as 1iT {y; j} =

|Di|−1j
∑T

t=1 1{Yit ≤ y,Dit = j} for j = 0, 1, where |Di|j counts the number of elements

Dit = j in Di. Similarly, 1iT {j} = 1{Di1 = 1− j, · · · , DiT = 1− j}. This remark tells that

the computational cost of estimating the test statistics is very minimal since we do not need

to go over the permutations in practice.
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